海洋环境下基于生物天然产物与药物分子的铜气相缓蚀剂研究
王新伟
学位类型硕士
导师李言涛
2024-05
学位授予单位中国科学院大学
学位授予地点中国科学院海洋研究所
学位名称生物与医药硕士
关键词紫铜 气相缓蚀剂 混料设计 复配 海洋大气环境
摘要

随着海洋工业的不断发展,各类仪器仪表设备在海洋大气环境下的应用越来越普及,面临的腐蚀问题也越来越多。海洋大气环境相比陆地存在更多的腐蚀性介质,因此对海洋大气环境中仪器仪表设备的腐蚀防护工作提出了更高的要求。铜金属性能优良可用于仪器仪表设备中的电路板等构件。但海洋大气环境中存在大量的腐蚀性介质,导致铜制设备服役年限大大减气相缓蚀剂在仪器设备等相对密闭的空间内对金属腐蚀可以起到很好的防护效果。但是现阶段所使用的铜气相缓蚀剂以有机缓蚀剂为主。此类缓蚀剂虽然具有较好的缓蚀效果,但对人体及环境均有不同程度的损害,不符合绿色发展的理念。目前,有部分研究表明生物天然产物与药物分子有为气相缓蚀剂的潜力。在当下注重绿色环保的大背景下,开发新型环境友好型气相缓蚀剂已成为科研热点。

本论文基于生物天然产物与药物分子,创新性地引入了混料设计作为气相缓蚀剂配方的设计方法,制备了一种缓蚀性能好,保护周期长,对环境好的复配气相缓蚀剂。首先从三种药物化合物:尿素、对乙酰氨基苯酚、谷氨酰胺;三种天然产物提取物:五倍子提取物、大蒜提取物、甘草提取物,筛选两种化合物作为气相缓蚀剂配方的原料。通过腐蚀失重,电化学测试,SEMXRD等方法综合评价种待选缓蚀剂的缓蚀性能最终选取五倍子提取物、大蒜提取物对乙酰氨基苯酚、谷氨酰胺作为复配气相缓蚀剂的原料。

通过正交实验设计与混料设计进行气相缓蚀剂最优配方的确定,证明混料设计在气相缓蚀剂配方设计中的可行性。正交实验设计L9(34)正交实验表进行分析设计,得到复配气相缓蚀剂配方对乙酰氨基苯酚:五倍子提取物:大蒜提取物:谷氨酰胺=3:30:30:1,缓蚀剂总用量为1.28 kg/m3,缓蚀效率为86.92%。利用Minitab软件进行混料设计,得到复配气相缓蚀剂的配方对乙酰氨基酚:五倍子提取物:大蒜提取物:谷氨酰胺=2.96:9.55:6.49:1缓蚀剂总用量为1.28 kg/m3预测缓蚀效率89.24%通过腐蚀失重实验得到实际缓蚀效率为90.47%。混料设计配方优于正交实验设计配方,证明复配气相缓蚀剂配方设计中混料设计所得配方更加科学高效

本研究研制了一种模拟海洋大气环境中的电化学测试装置,利用其进行电化学测试研究复配缓蚀剂的作用机理。复配气相缓蚀剂为混合型抑制剂。缓蚀剂的加入显著降低了自腐蚀电流值,表明在铜表面形成了保护膜,减缓了金属的腐蚀速率。阻抗测试结果表明电极表面的过程既受电荷转移控制,也受扩散控制

将复配气相缓蚀剂进行SEMXRDXPS等表征分析。发现加入复配缓蚀剂后铜表面形成了一层致密完整的保护膜,可以很好的将金属基体与腐蚀介质隔绝开,表现出良好的缓蚀效果。由于缓蚀剂分子中的极性基团含有孤对电子,缓蚀剂的加入促使腐蚀产物变成更稳定的状态。腐蚀紫铜表面外层是Cu2(OH)3Cl,中间层是CuCl,内层是Cu2O产生了分层现象

将气相缓蚀剂制备成气相防锈纸进行最佳用量研究。结果表明随着涂布量的增加,缓蚀效率不断增加。当涂布量为15 g/m2时,随着涂布量的增加缓蚀率并未出现明显增大的情况。从绿色经济的角度考虑,认为本课题新型气相缓蚀剂制备的气相防锈纸最佳用量为15 g/m2,缓蚀率达到91.73%

在本研究中,复配缓蚀剂分子通过吸附作用在金属表面形成一层致密的保护膜,阻碍腐蚀介质与金属接触,减缓金属腐蚀。复配气相缓蚀剂中同时存在长效缓蚀剂与短效缓蚀剂,可以在缓蚀剂加入后的整个保护周期持续不间断的在金属表面吸附成膜。所有的实验结果均表明,在模拟海洋大气环境中,本课题所制备的复配气相缓蚀剂是一种效的铜腐蚀抑制剂。

其他摘要

With the continuous development of the marine industry, the application of various instruments and equipment in the marine atmospheric environment is becoming more and more popular, and there are also more and more corrosion problems faced. Compared to land, there are more corrosive media in the marine atmospheric environment, so there are higher requirements for the corrosion protection of instruments and equipment in the marine atmospheric environment. Copper has excellent performance and can be used in circuit boards and other components in instruments and equipment. However, there are a large number of corrosive media in the marine atmospheric environment, which greatly reduces the service life of copper equipment. Vapor-phase corrosion inhibitors can play a good protective effect on metal corrosion in relatively closed spaces such as instruments and equipment. However, the copper vapor-phase corrosion inhibitors currently used are mainly organic inhibitors. Although these inhibitors have good corrosion inhibition effect, they have different degrees of damage to human body and environment, which is not in line with the concept of green development. Some studies have shown that natural products and drug molecules have potential as vapor-phase corrosion inhibitors. In the current context of focusing on green environmental protection, developing new environmentally friendly vapor-phase corrosion inhibitors has become a research hot spot.

Based on biological natural products and drug molecules, this paper innovatively introduces a mixed design as a design method for gas phase corrosion inhibitor formulations, and prepares a compound vapor-phase corrosion inhibitor with good corrosion inhibition performance, long protection period, and good environmental performance. In order to determine the feasibility of candidate compounds as raw materials for compound corrosion inhibitors, four compounds were selected as raw materials for the vapor-phase corrosion inhibitor formulation from three drug compounds: urea, Paracetamol, and glutamine; and three natural product extracts: gallnut extract, garlic extract, and licorice extract. The corrosion inhibition performance of six candidate corrosion inhibitors was comprehensively evaluated by methods such as corrosion weight loss, electrochemical testing, SEM, and XRD. Finally, gallnut extract, garlic extract, Paracetamol, and glutamine were selected as raw materials for compound gas phase corrosion inhibitor.

At the same time, orthogonal experimental design and blending design were introduced to determine the optimal formulation of vapor-phase corrosion inhibitor to prove the feasibility of blending design in vapor-phase corrosion inhibitor formulation. Orthogonal experimental design used L9(34) orthogonal experimental table for analysis and design, and the optimal formulation was obtained as acetaminophen: gallnut extract: garlic extract: glutamine = 3:30:30:1, with a total dosage of 1.28 kg/m3 and corrosion inhibition efficiency of 86.92 %. Minitab software was used for blending design, and the optimal formulation of compound vapor-phase corrosion inhibitor was obtained as acetaminophen: gallnut extract: garlic extract: glutamine = 2.96:9.55:6.49:1, with a total dosage of 1.28 kg/m3 and a predicted corrosion inhibition efficiency of 89.24 %. The actual corrosion inhibition efficiency obtained through corrosion weight loss experiment was 90.47 %. The blending design formulation was superior to the orthogonal experimental design, proving that the results obtained from blending design in compound vapor-phase corrosion inhibitor formulation design were more scientific and accurate.

Using a self-made electrochemical testing device that simulates the marine atmospheric environment, the mechanism of action of a compound corrosion inhibitor was studied through electrochemical testing. The compound gas phase inhibitor is a mixed inhibitor. The addition of the inhibitor significantly reduced the self-corrosion current value, indicating that a protective film was formed on the copper surface, slowing down the corrosion rate of the metal, with a corrosion inhibition efficiency of 92.34 %. The impedance test results showed that the process on the electrode surface was controlled by both charge transfer and diffusion.

The SEM, XRD, XPS and other characterization analysis were conducted on the composite vapor phase inhibitor. It was found that after adding the composite inhibitor, a dense and complete protective film was formed on the copper metal surface, which can effectively isolate the metal substrate from the corrosive medium and exhibit good corrosion inhibition effect. Due to the polar groups in the inhibitor molecules containing lone pairs of electrons, the addition of the inhibitor promotes the corrosion products to become more stable. The surface corrosion products of copper produce a layering phenomenon, namely a dense Cu2O inner layer and a Cu2(OH)3Cl outer layer, with CuCl sandwiched between the Cu2O layer and Cu2(OH)3Cl layer.

The optimal dosage of the vapor-phase inhibitor prepared into vapor phase anti-rust paper was studied. The results showed that the corrosion inhibition efficiency increased with the increase of coating amount. When the coating amount was 15 g/m2, there was no significant increase in the corrosion inhibition rate with the increase of coating amount. From the perspective of green economy, it is believed that the optimal dosage of the new vapor phase inhibitor prepared into vapor phase anti-rust paper in this study is 15 g/m2, with a corrosion inhibition rate of 91.73 %.

In this study, the molecules of the compound corrosion inhibitor form a dense protective film on the metal surface through physical adsorption and chemical adsorption, which hinders the contact between the corrosion medium and the metal and slows down the corrosion of the metal. The compound vapor phase corrosion inhibitor contains both long-acting and short-acting corrosion inhibitors, which can continuously adsorb and form a film on the metal surface throughout the entire protection period after the addition of the corrosion inhibitor. All experimental results indicate that in simulated marine atmospheric environments, the compound vapor phase corrosion inhibitor prepared in this study is an effective copper corrosion inhibitor.

语种中文
目录

 

 

1章 绪论

1.1 引言

1.2 海洋环境腐蚀

1.2.1 海洋环境条件及腐蚀行为

1.2.2 海洋大气腐蚀

1.3 气相缓蚀剂研究进展

1.3.1 气相缓蚀剂简介

1.3.2 气相缓蚀剂发展历史

1.3.3 气相缓蚀剂研究进展

1.3.4 气相缓蚀剂机理研究

1.3.5 单组分气相缓蚀剂研究

1.3.6 复配气相缓蚀剂研究

1.3.7 绿色气相缓蚀剂研究

1.4 选题依据与研究内容

1.4.1 选题依据

1.4.2 研究内容

2章 材料制备与实验方法

2.1 实验材料试剂与实验仪器设备

2.2 实验方法

2.2.1 气相缓蚀剂减量挥发实验

2.2.2 腐蚀失重试验

2.2.3 紫铜腐蚀产物形貌及成分分析

2.2.4 模拟海洋大气环境下气相缓蚀剂的电化学测试装置设计

2.2.5 电化学性能测试

2.2.6 正交实验设计

2.2.7 混料设计

2.2.8 气相防锈纸制备与最佳用量确定

2.2.9 气相防锈快速甄别试验

3章 单组分气相缓蚀剂筛选

3.1 前言

3.2 实验结果与讨论

3.2.1 减量挥发实验

3.2.2 腐蚀失重实验

3.2.3 极化曲线测试

3.2.4 腐蚀产物表征分析

3.2.5 腐蚀产物表征分析

3.3 本章小结

4章 气相缓蚀剂配方设计

4.1 前言

4.2 正交实验设计

4.2.1 正交实验设计结果

4.2.2 极差分析法

4.2.3 方差分析法

4.3 混料设计

4.3.1 混料设计实验结果

4.3.2 回归模型建立

4.3.3 气相缓蚀剂最优配方确定

4.4 两种设计方法对比

4.5 本章小结

5章 气相缓蚀剂缓蚀性能与缓蚀机理研究

5.1 前言

5.2 电化学测试结果

5.2.1 极化曲线测试结果

5.2.2 交流阻抗测试结果

5.3 腐蚀产物表征分析

5.3.1 扫描电镜及质谱仪分析

5.3.2 X射线衍射仪(XRD)分析

5.3.3 拉曼光谱(Raman)分析

5.3.4 X射线光电子能谱(XPS)分析

5.4 复配气相缓蚀剂缓蚀机理分析

5.5 复配气相缓蚀剂最佳用量确定

5.5.1 气相快速甄别试验结果

5.5.2 气相防锈纸最佳涂布量实验结果

5.6 本章小结

6章 结论与展望

6.1 结论

6.2 本课题创新点

6.3 展望

参考文献

 

作者简历及攻读学位期间发表的学术论文与其他相关学术成果 69

 

文献类型学位论文
条目标识符http://ir.qdio.ac.cn/handle/337002/185176
专题海洋环境腐蚀与生物污损重点实验室
推荐引用方式
GB/T 7714
王新伟. 海洋环境下基于生物天然产物与药物分子的铜气相缓蚀剂研究[D]. 中国科学院海洋研究所. 中国科学院大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
学位论文-海洋环境下基于生物天然产物与药(5527KB)学位论文 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[王新伟]的文章
百度学术
百度学术中相似的文章
[王新伟]的文章
必应学术
必应学术中相似的文章
[王新伟]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 学位论文-海洋环境下基于生物天然产物与药物分子的铜气相缓蚀剂研究.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。