金属有机框架及衍生复合材料构建与光催化防污性能研究
张雨
学位类型博士
导师侯保荣
2024-05-17
学位授予单位中国科学院大学
学位授予地点中国科学院海洋研究所
学位名称理学博士
关键词海洋生物污损,防污材料,金属有机框架,光催化,异质结
摘要

海洋生物污损是海洋工程设施在应用中普遍面临的棘手问题,它不仅对海洋经济发展构成挑战,还可能对海洋生态环境造成严重影响。尽管目前已发展多种新型防污技术,但大多数基于毒性的防污材料可能对非目标生物和海水环境产生负面影响。基于此,开发绿色环保的光催化防污技术显得尤为迫切。在太阳光的激发下,光催化防污材料可以被激发产生活性物种,通过抑制细菌和微藻活性有效防治生物膜在工程设施表面附着形成,从而阻止后续大型污损生物的附着。金属有机框架(Metal-organic frameworks,MOFs)及其衍生物作为新型光催化材料,因其多孔结构、大比表面积和易功能化等特性,在光催化领域具有广泛应用前景。因此,本研究基于MOFs及其衍生物,采用多种合成技术与具有不同能带结构的半导体材料结合,成功构建四种基于MOFs及衍生物的复合材料。通过对四种复合材料进行详尽的表征分析,并研究其在光催化防污领域中的应用效果,为设计新型绿色环保的光催化海洋防污材料提供新思路和方法。主要内容如下:

(1)通过简单的原位生长法成功地构建一种新型的BiOBr/ZIF-67 S型异质结。表征结果显示,BiOBr/ZIF-67复合材料中ZIF-67作为壳结构均匀且牢固地包裹在BiOBr微球表面,形成具有大比表面积和强光吸收能力的核壳结构。通过针对典型海洋污损细菌(金黄色葡萄球菌(Staphylococcus aureus, S. aureus)和大肠杆菌(Escherichia coli, E. coli))和微藻(小球藻(Chlorella)和三角褐指藻(Phaeodactylum tricornutum, P. tricornutum))的灭活实验,评估BiOBr/ZIF-67的光催化防污效能。结果表明,得益于光生电荷分离效率提高和可见光响应增强,BiOBr/ZIF-67复合材料的光催化防污活性较单体BiOBr和ZIF-67明显提高。BiOBr/ZIF-67复合材料对S. aureusE. coli的抑制率分别在可见光照射40 min和60 min内达到99.99%,对P. tricornutumChlorella抑制率在6 h内分别达到86.7%和90.1%。催化机理研究证明,在光催化抑制生物膜形成的反应中起关键作用的活性物种为·O2-、·OH、1O2和空穴。此外,通过密度泛函理论(DFT)模拟计算和X射线光电子能谱(XPS)测试,推断出BiOBr/ZIF-67中S型异质结的形成以及BiOBr与ZIF-67之间光生电子转移路径。更重要的是,将BiOBr/ZIF-67引入有机硅涂层,细菌在涂层表面附着后活性受到明显抑制,显示出其作为海洋防污剂的潜在应用前景。

(2)为进一步提升MOF基复合材料性能,通过在Bi2MoO6表面原位生长纳米立方体ZIF-67构建具有核壳结构的Bi2MoO6/ZIF-67异质结,并对复合材料的形成机制进行深入分析。在可见光照射下,Bi2MoO6/ZIF-67复合材料相较于单体Bi2MoO6和ZIF-67表现出卓越的光催化灭活细菌和微藻性能和良好的稳定性。Bi2MoO6/ZIF-67分别在40 min和50 min内对S. aureusE. coli的杀菌率达99.99%,在6 h内对P. tricornutumChlorella的抑制率分别达到96.0%和84.4%。通过光电化学(PEC)测试、光致发光(PL)光谱和电子自旋共振(ESR)测试对Bi2MoO6/ZIF-67的光催化机制进行研究,并使用DFT模拟计算验证光生电荷的传输途径以及S型异质结的形成。结果表明,Bi2MoO6/ZIF-67的高效光催化效率得益于大比表面积的ZIF-67引入,使得可见光吸收能力增强,光生载流子分离效率提高。具有核壳结构的Bi2MoO6/ZIF-67接触界面形成S型异质结,在保持强氧化还原能力的情况下产生·O2-、·OH、1O2和空穴作为主要的活性物种。最后,在三亚实海挂片实验中,将Bi2MoO6/ZIF-67添加到达克罗涂层后,污损生物附着量较空白显著减少。因此,Bi2MoO6/ZIF-67展现出高效的光催化防污应用潜力,为光催化剂在海洋防污领域的应用提供新的方向。

(3)为解决ZIF-67稳定性弱的问题,以ZIF-67作为前体,通过原位牺牲模板法,制备一种创新性的Bi2MoO6/NiCo-LDH复合材料。光催化剂结构、形态、光学和电化学全面分析表明,ZIF-67在实现从Bi2MoO6/ZIF-67到Bi2MoO6/NiCo-LDH原位转换的同时保持核壳结构,这对提高光吸收性能和光生载流子分离起到促进作用。光催化性能测试显示,Bi2MoO6/NiCo-LDH复合材料灭活微生物能力显著高于Bi2MoO6和NiCo-LDH,并且Bi2MoO6/Ni2.5Co1-LDH表现出最佳性能。在短时间可见光照射下,Bi2MoO6/Ni2.5Co1-LDH对S. aureusE. coli、铜绿假单胞杆菌(Pseudomonas aeruginosa, P. aeruginosa)和芽孢杆菌(Bacillus)四种典型污损细菌的杀菌率达99.99%,具有广谱杀菌性能。经过6 h的可见光照射后,Bi2MoO6/Ni2.5Co1-LDH对P. tricornutumChlorella的抑制效率分别达到79.1%和71.5%。通过XPS、PEC测试和DFT计算,Bi2MoO6和NiCo-LDH之间S型异质结界面电荷转移机制得到强有力的证实,该机制显著增强光生电子-空穴的空间分离和转移,并保持强大的氧化还原性能。在S型异质结的作用下,Bi2MoO6/Ni2.5Co1-LDH产生的多种活性物种在提升整体性能方面发挥关键作用,如·O2-、·OH、1O2和空穴。因此,Bi2MoO6/Ni2.5Co1-LDH所表现出的广谱杀灭微生物性能证明其可有效抑制生物膜的形成,在防污应用中具有巨大的潜力。

(4)为利用ZIF-67特有立方体结构并解决弱稳定性问题,通过衍生后复合的合成策略,制备不同比重的NiCo-LDH/SnIn4S8复合材料。以立方体ZIF-67为模板前体,经Ni2+刻蚀后得到保持立方体结构的NiCo-LDH,然后在其表面生长片状SnIn4S8。表征结果显示,ZIF-67转化为NiCo-LDH过程中保留原始结构有利于保持其大比表面积和多活性位点等优势,而SnIn4S8在NiCo-LDH表面均匀分散生长可规避SnIn4S8易团聚的缺点。NiCo-LDH/SnIn4S8复合材料相较于NiCo-LDH和SnIn4S8表现出对S. aureusE. coliP. aeruginosaBacillus优异的光催化杀菌性能。在可见光照射60 min作用后,性能最佳的NiCo-LDH/SnIn4S8-1对Bacillus的杀菌率可达99.99%,对于另外三种细菌在90 min可以实现99.99%的杀灭率,这证明NiCo-LDH/SnIn4S8-1具有广谱的杀菌性能。此外,NiCo-LDH/SnIn4S8-1也展示出优异的除藻性能,在6 h可见光照射下对P. tricornutumChlorella的抑制率分别达到94.1%和89.2%。通过光催化机理分析及ESR测试证明,在NiCo-LDH/SnIn4S8复合体系中·O2-、·OH、1O2和空穴等活性物种发挥作用,并且在复合材料紧密的接触界面处构建了S型异质结,这对于提高氧化还原能力和增强光生载流子分离效率具有显著优势,进而有利于增强其光催化防污能力。新型NiCo-LDH/SnIn4S8的研究为光催化防污材料在海洋防污中的应用提供理论依据。

其他摘要

Marine biofouling is a challenging issue commonly encountered in the application of marine engineering facilities. It poses a challenge to marine economic development and causes significant impacts on marine ecological environments. Despite the development of various novel antifouling technologies, most toxicity-based antifouling materials may have adverse effects on non-target organisms and the marine environment. Therefore, the development of green and environmentally friendly photocatalytic antifouling technology appears particularly urgent. Under the excitation of sunlight, photocatalytic antifouling materials can generate active substances when stimulated, effectively inhibiting bacterial and microalgal activity to prevent biofilm formation on engineering facility surfaces, thereby averting the subsequent attachment of larger fouling organisms. Metal-organic frameworks (MOFs) and their derivatives, emerging as novel photocatalysts, offer extensive application potential in photocatalysis owing to their porous structure, large specific surface area, and ease of functionalization. Therefore, based on MOFs and their derivatives, this study successfully constructed four kinds of composites using various synthesis techniques combined with semiconductor materials possessing different band structures. This study conducted thorough characterization and analysis of the four composites. Additionally, it studied their application effects in the field of photocatalytic antifouling. Through this work, the study provides new insights and methods for designing novel green and environmentally friendly photocatalytic antifouling materials for marine environments. The main contents are as follows:

(1) A novel BiOBr/ZIF-67 S-scheme heterojunction was successfully constructed through a simple in-situ growth method. Characterization results revealed that ZIF-67 formed a uniform and firmly encapsulated shell structure on the surface of BiOBr microspheres in the BiOBr/ZIF-67 composites. The core-shell structure was characterized by a large specific surface area and strong light absorption capacity. Photocatalytic antifouling efficiency of BiOBr/ZIF-67 was evaluated through inactivation experiments against typical marine fouling bacteria (Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli)) and microalgae (Chlorella and Phaeodactylum tricornutum (P. tricornutum)). Due to enhanced charge separation efficiency and visible light response, the photocatalytic antifouling activity of BiOBr/ZIF-67 composites was significantly higher than that of individual BiOBr and ZIF-67. The inhibition rates of S. aureus and E. coli by BiOBr/ZIF-67 reached 99.99% within 40 min and 60 min of visible light irradiation, respectively, while the inhibition rates of P. tricornutum and Chlorella reached 86.7% and 90.1% within 6 h, respectively. Mechanistic studies indicated that the active species ·O2-, ·OH, 1O2, and holes play a key role in the photocatalytic inhibition of biofilm formation. Density functional theory (DFT) simulation calculations and X-ray photoelectron spectroscopy (XPS) tests inferred the formation of the S-scheme heterojunction in BiOBr/ZIF-67 and the pathway of photoinduced electron transfer between BiOBr and ZIF-67. Importantly, introducing BiOBr/ZIF-67 into an organic silicone resin coating significantly reduced bacterial activity on the coating surface, demonstrating its promising potential as a marine antifouling agent.

(2) To further enhance the performance of MOFs-based composites, core-shell structured Bi2MoO6/ZIF-67 heterojunction was constructed by in-situ growing nano-cubic ZIF-67 on the surface of Bi2MoO6. Additionally, the formation mechanism of the composites was thoroughly analyzed. Under visible light irradiation, Bi2MoO6/ZIF-67 composites exhibited superior photocatalytic bactericidal and microalgae-inhibiting performance compared to individual Bi2MoO6 and ZIF-67, along with good stability. Bi2MoO6/ZIF-67 achieved sterilization rates of 99.99% for S. aureus and E. coli within 40 min and 50 min, respectively, and inhibition rates of 96.0% for P. tricornutum and 84.4% for Chlorella within 6 h. The photocatalytic mechanism of Bi2MoO6/ZIF-67 was investigated through photoelectrochemical (PEC) tests, photoluminescence (PL) spectra, and electron spin resonance (ESR) tests. DFT simulation calculations were used to verify the pathway of photoinduced charge transfer and the formation of the S-scheme heterojunction. The results indicated that the efficient photocatalytic performance of Bi2MoO6/ZIF-67 attributed to the introduction of ZIF-67 with a high specific surface area, which enhanced visible light absorption and improved the separation efficiency of photoinduced charge carriers. The core-shell structured interface of Bi2MoO6/ZIF-67 formed an S-scheme heterojunction, generating ·O2-, ·OH, 1O2, and holes as the main active species, while maintaining strong redox capability. Finally, in the field experiment in Sanya, the addition of Bi2MoO6/ZIF-67 to the dacromet coating significantly reduced the amount of fouling organisms attached. Therefore, Bi2MoO6/ZIF-67 demonstrates high-efficiency photocatalytic antifouling potential, providing a new direction for the application of photocatalysts in the field of marine antifouling.

(3) To address the issue of poor stability in ZIF-67, an innovative Bi2MoO6/NiCo-LDH composites using ZIF-67 as a precursor were synthesized via in-situ sacrificial template method. Comprehensive structural, morphological, optical, and electrochemical analyses of the photocatalyst revealed that Bi2MoO6/NiCo-LDH maintained the core-shell structure while undergoing an in-situ transformation from Bi2MoO6/ZIF-67, promoting enhanced light absorption and photocarrier separation. Photocatalytic performance tests demonstrated that the microbial inactivation ability of Bi2MoO6/NiCo-LDH composites was significantly higher than that of Bi2MoO6 and NiCo-LDH, with Bi2MoO6/Ni2.5Co1-LDH exhibiting the optimal performance. Under short-term visible light irradiation, Bi2MoO6/Ni2.5Co1-LDH achieved a sterilization rate of 99.99% against four typical fouling bacteria, including S. aureus, E. coli, Pseudomonas aeruginosa (P. aeruginosa), Bacillus. Bi2MoO6/Ni2.5Co1-LDH exhibited broad-spectrum bactericidal properties. After 6 h of visible light irradiation, Bi2MoO6/Ni2.5Co1-LDH achieved inhibition efficiencies of 79.1% and 71.5% against P. tricornutum and Chlorella, respectively. Through XPS, PEC tests, and DFT calculations, the S-scheme heterojunction charge transfer mechanism at the interface between Bi2MoO6 and NiCo-LDH was confirmed. This mechanism significantly enhanced the spatial separation and transfer of photoinduced electrons and holes while maintaining strong redox capability. Facilitated by the S-scheme heterojunction, various active species generated by Bi2MoO6/Ni2.5Co1-LDH played a crucial role in enhancing overall performance, such as ·O2-, ·OH, 1O2, and holes. Thus, the broad-spectrum microbial eradication capability exhibited by Bi2MoO6/Ni2.5Co1-LDH demonstrates its potential effectiveness in inhibiting biofilm formation, presenting enormous potential for antifouling applications.

(4) To harness the unique cubic structure of ZIF-67 and mitigate its relatively poor stability, post-derivatization composite synthesis strategy was used to fabricate NiCo-LDH/SnIn4S8 composites with varying mass ratios. The process involved using cubic ZIF-67 as a template precursor, generating cubic NiCo-LDH upon Ni2+ etching that retained its cuboidal framework, and subsequently growing flaky SnIn4S8 on its surface. Characterization results indicated that preserving the original structure during the transformation from ZIF-67 to NiCo-LDH was advantageous for maintaining its large specific surface area and multiple active sites. Additionally, the uniform dispersion and growth of SnIn4S8 on the surface of NiCo-LDH helped to avoid the tendency of SnIn4S8 to aggregate. Compared to NiCo-LDH and SnIn4S8, NiCo-LDH/SnIn4S8 composites exhibited excellent photocatalytic bactericidal performance against S. aureus, E. coli, P. aeruginosa, and Bacillus. After 60 min of visible light irradiation, the optimal performing NiCo-LDH/SnIn4S8-1 achieved a sterilization rate of 99.99% against Bacillus and killed 99.99% of the other three bacteria within 90 min, demonstrating broad-spectrum bactericidal capabilities. Additionally, NiCo-LDH/SnIn4S8-1 demonstrated outstanding algae removal performance, achieving inhibition rates of 94.1% for P. tricornutum and 89.2% for Chlorella after 6 h of visible light irradiation. Analysis of the photocatalytic mechanism and ESR tests confirmed the roles of active species such as ·O2-, ·OH, 1O2, and holes in the NiCo-LDH/SnIn4S8 composites. Furthermore, the construction of an S-scheme heterojunction at the tight contact interface of the composites conferred significant advantages in enhancing the redox capability and improving photocarrier separation efficiency, thereby enhancing its photocatalytic antifouling capacity. The study of the novel NiCo-LDH/SnIn4S8 provides theoretical support for the application of photocatalytic antifouling materials in marine antifouling.

学科门类理学::海洋科学
语种中文
目录

第1章 绪论... 1

1.1 海洋生物污损... 1

1.1.1 海洋生物污损概述... 1

1.1.2 海洋生物污损发生过程... 1

1.1.3 海洋生物污损防治研究现状... 2

1.2 光催化防污... 4

1.2.1 光催化防污机理... 4

1.2.2 光催化防污材料... 6

1.3 金属有机框架及其光催化应用... 7

1.3.1 金属有机框架... 7

1.3.2 金属有机框架在光催化中的应用... 7

1.3.3 金属有机框架基光催化剂改性... 9

1.4 金属有机框架衍生物... 12

1.4.1 常见金属有机框架衍生材料... 13

1.4.2 金属有机框架衍生复合材料... 15

1.5 选题依据和研究思路... 17

1.5.1 选题依据... 17

1.5.2 研究目标与内容... 17

1.5.3 研究方案... 18

第2章 可见光驱动的BiOBr/ZIF-67 S型异质结调控构筑及其防污性能研究... 21

2.1 前言... 21

2.2 实验方法... 22

2.2.1 化学试剂和仪器... 22

2.2.2 BiOBr/ZIF-67合成方法... 23

2.2.3 材料表征... 24

2.2.4 光催化防污性能测试... 24

2.2.5 光催化防污机制测试... 26

2.3 实验结果与讨论... 27

2.3.1 BiOBr/ZIF-67的形貌和结构... 27

2.3.2 BiOBr/ZIF-67的光电性能... 32

2.3.3 BiOBr/ZIF-67的光催化防污性能... 34

2.3.4 BiOBr/ZIF-67的光催化机理... 38

2.4 小结... 42

第3章 ZIF-67封装Bi2MoO6构筑S型异质结用于光催化防污性能研究... 45

3.1 前言... 45

3.2 实验方法... 46

3.2.1 化学试剂和仪器... 46

3.2.2 Bi2MoO6/ZIF-67合成方法... 46

3.2.3 材料表征... 47

3.2.4 光催化防污性能测试... 47

3.2.5 光催化防污机制测试... 47

3.3 实验结果与讨论... 47

3.3.1 Bi2MoO6/ZIF-67的形貌和结构... 47

3.3.2 Bi2MoO6/ZIF-67的光电性能... 52

3.3.3 Bi2MoO6/ZIF-67的光催化防污性能... 54

3.3.4 Bi2MoO6/ZIF-67的光催化防污机理... 58

3.4 小结... 62

第4章 MOF衍生构筑Bi2MoO6/NiCo-LDH S型异质结及其光催化防污性能研究... 65

4.1 前言... 65

4.2 实验方法... 66

4.2.1 化学试剂和仪器... 66

4.2.2 Bi2MoO6/NiCo-LDH合成方法... 66

4.2.3 材料表征... 67

4.2.4 光催化防污性能测试... 67

4.2.5 光催化防污机制测试... 67

4.3 实验结果与讨论... 67

4.3.1 Bi2MoO6/NiCo-LDH的形貌和结构... 67

4.3.2 Bi2MoO6/NiCo-LDH的光电性能... 73

4.3.3 Bi2MoO6/NiCo-LDH的光催化防污性能... 75

4.3.4 Bi2MoO6/NiCo-LDH的光催化防污机理... 80

4.4 小结... 83

第5章 SnIn4S8修饰ZIF-67衍生的NiCo-LDH构建S型异质结与光催化防污性能研究... 85

5.1 前言... 85

5.2 实验方法... 86

5.2.1 化学试剂和仪器... 86

5.2.2 NiCo-LDH/SnIn4S8合成方法... 86

5.2.3 材料表征... 87

5.2.4 光催化防污性能测试... 87

5.2.5 光催化防污机制测试... 87

5.3 实验结果与讨论... 87

5.3.1 NiCo-LDH/SnIn4S8的形貌和结构... 87

5.3.2 NiCo-LDH/SnIn4S8的光电性能... 91

5.3.3 NiCo-LDH/SnIn4S8的光催化防污性能... 93

5.3.4 NiCo-LDH/SnIn4S8的光催化防污机理... 97

5.4 小结... 100

第6章 研究结论与展望... 101

6.1 主要结论... 101

6.2 创新点... 103

6.3 研究展望... 104

参考文献... 105

致谢... 129

作者简历及攻读学位期间发表的学术论文与其他相关学术成果    131

文献类型学位论文
条目标识符http://ir.qdio.ac.cn/handle/337002/185183
专题海洋环境腐蚀与生物污损重点实验室
推荐引用方式
GB/T 7714
张雨. 金属有机框架及衍生复合材料构建与光催化防污性能研究[D]. 中国科学院海洋研究所. 中国科学院大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
最终论文.pdf(35942KB)学位论文 暂不开放CC BY-NC-SA
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[张雨]的文章
百度学术
百度学术中相似的文章
[张雨]的文章
必应学术
必应学术中相似的文章
[张雨]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。