基于改性无机填料/电纺纤维膜制备Janus涂层及其防腐性能研究
袁帅
学位类型博士
导师侯保荣
2024-05-17
学位授予单位中国科学院大学
学位授予地点中国科学院海洋研究所
学位名称理学博士
关键词腐蚀 涂层 超疏水 Janus 自修复
摘要

金属腐蚀问题至今仍是全球范围内的一大严峻挑战,其影响广泛覆盖冶金、化工、能源、交通运输、航空航天、基础设施等诸多行业。在各类防腐措施中,有机涂层技术因高效性能与广泛应用而占据主导地位,其使用占比高达66%。然而,有机涂层在实际应用中易受外力冲击而损伤,微裂纹的形成难以即刻发现和修复,容易造成涂层防腐效能及寿命显著降低。因此,亟需开发适应于多种环境下的新型复合涂层。近年来,随着工业需求的持续增长,防腐涂层技术的研发力度不断加大,涌现出具有诸如超疏水性、自修复、隔热性及防污等功能的复合涂层。尽管复合涂层的功能不断丰富,但整合这些功能于单涂层结构的研究较少。Janus材料的问世,为新型防腐涂层的制备与研发开辟了富有潜力的路径。

Janus膜具有的各向异性集成结构,引起了人们的极大兴趣,并在相关领域取得了重要突破。由于Janus结构内的界面结合较弱且易于损坏,所以,其在防腐涂层开发中的应用受到限制。为了解决上述缺点提升涂层防护效果,本文从界面粘合、自愈合以及耐久性等多个角度对防腐涂层进行了结构设计与界面强化,提出了基于静电纺丝膜为载体的疏水/亲水Janus防腐涂层的新策略。通过一系列性能测试,评价了防腐涂层的机械强度和海洋腐蚀防护性能。该研究为Janus材料在防腐涂层领域的应用开发提供了理论基础,对推动新型海洋腐蚀防护涂料的研发具有重要意义,主要研究结果如下:

1)基于简化制备工艺流程,降低有害物质使用,通过对天然粘土颗粒以及纳米金属氧化物的无氟化超疏水改性,赋予其超疏水特性之后再与环氧树脂结合制备出环境友好型的超疏水复合涂层。从材料设计角度入手,系统总结了高效超疏水颗粒的制备策略,为后续Janus膜的超疏水侧设计提供坚实的理论基础与实验数据支撑,推进了环保型超疏水技术的发展。研究发现,环氧树脂内部的孔隙被有效填补,进而增强了防腐涂层的屏蔽效果,涂层呈现出卓越的耐腐蚀性。(2)从纤维膜/树脂界面粘合强化的角度入手,深入研究了不同树脂与静电纺丝纳米纤维膜的结合强度与界面效应,评估纤维膜与不同树脂制备的复合涂层耐腐蚀性能与耐久性能,为后续制备Janus膜亲水侧提供实验思路与理论依据。

3)采用静电纺丝法结合喷涂技术,开发了新型Janus纳米纤维膜作为Q235钢的有效防护涂层。静电纺丝纳米纤维膜的存在增强了改性粒子与树脂之间的界面附着力和相容性。该方法增强了Janus膜的阻隔效应,同时解决了静电纺膜与金属基体结合不良的缺点。这项研究挖掘了Janus电纤维膜直接作为金属防腐涂层的潜力,从而构建了多功能兼具的复合涂层。

4)将形状记忆材料与Janus结构材料相结合,赋予Janus膜自愈合功能的同时,保证其超疏水性和耐腐蚀性。该涂层弥补了外援型自修复涂层修复效率低,修复次数少的缺陷,弥补了电纺纤维膜与金属结合力差的缺点。实验证明,该复合涂层修复效果好,修复次数多,能够应用在工业生产中,进一步推进Janus材料在腐蚀防护领域的发展。

 

The problem of metal corrosion is still a serious challenge worldwide, with a wide range of impacts covering metallurgy, chemicals, energy, transport, aerospace, infrastructure and many other industries. Among all anti-corrosion measures, organic coating technology dominates the market due to its remarkable effect and wide application, accounting for as much as 66% of the total. However, organic coatings are susceptible to external impacts and damage in practical applications, microcracks are formed quietly and difficult to find and repair immediately, if not maintained in time, the coating corrosion protection effectiveness and life will be significantly reduced. Therefore, the development of new composite coatings adapted to a variety of environments is imminent. In recent years, in order to meet the growing industrial demand, anti-corrosion coating research and development is more and more fierce, superhydrophobicity, self-repairing, thermal insulation and anti-fouling properties are also endless. However, the integration of multiple functions into a single coating has not yet been thoroughly researched. The emergence of Janus materials has provided an interesting idea for the preparation and development of new anticorrosion coatings.

Due to the integrated structure of Janus membranes with different properties and opposite properties, it has aroused great interest in order to make important breakthroughs in related fields. However, the application of Janus membranes in the development of anticorrosive coatings for metallic structures has been limited due to the weak interfacial bonding within the Janus structure and its susceptibility to damage. In order to address these shortcomings, this paper presents a new strategy for hydrophobic/hydrophilic Janus anticorrosion coatings based on electrostatically spun film as a carrier, with the goal of enhancing the protective effect of the coatings, and the structural design and interfacial reinforcement of the anticorrosion coatings from the interfacial bonding, self-healing, and durability perspectives. Through a series of performance tests, the mechanical strength of the anticorrosion coating was evaluated and the marine corrosion protection performance of the anticorrosion coating was assessed. This study provides a theoretical basis for the application development of Janus materials in the field of anticorrosive coatings, and is of great significance in promoting the research and development of new types of marine corrosion protection coatings, and the main research results are as follows:

(1) Based on simplifying the preparation process and reducing the use of hazardous substances, we focus on the non-fluorinated superhydrophobic modification of natural clay particles and nano-metal oxides, and then prepare environmentally friendly superhydrophobic composite coatings by combining them with epoxy resins after endowing them with superhydrophobic properties. From the perspective of material design, we have systematically summarised the preparation strategy of highly efficient superhydrophobic particles, which will provide a solid theoretical foundation and experimental data support for the subsequent design of superhydrophobic side of Janus membranes, and promote the development of environmentally friendly superhydrophobic technology. It is found that the pores inside the epoxy resin are effectively filled, which in turn enhances the shielding effect of the anticorrosive coating, and the coating exhibits excellent corrosion resistance. (2) Starting from the perspective of fibre membrane/resin interfacial adhesion strengthening, the bonding strength and interfacial effect of different resins and electrostatically spun nanofibre membranes were studied in depth, and the corrosion resistance and durability of composite fibre membranes prepared with different resins were assessed, which provided experimental ideas and theoretical basis for the subsequent preparation of the hydrophilic side of Janus membranes.

(3) A new type of Janus nanofibre membrane was developed as an effective protective coating for Q235 steel by using the electrostatic spinning method combined with spraying technology. The presence of the electrostatically spun nanofibre membrane enhanced the interfacial adhesion and compatibility between the modified particles and the resin. This method enhanced the barrier effect of Janus membranes while addressing the disadvantage of poor binding of electrostatically spun membranes to the metal matrix. This study reveals the potential of Janus electrofibrous membranes to be used directly as anti-corrosion coatings on metals, thus achieving composite coatings with multifunctional combination of anti-corrosion and antifouling.

(4) Combining shape memory materials with Janus structural materials, the Janus membrane is endowed with self-healing functions while ensuring superhydrophobicity and corrosion resistance. The coating makes up for the defects of low repair efficiency and low number of repairs of external-aided self-healing coatings, and solves the shortcomings of poor bonding between electrospun fibre membrane and metal. Experiments have proved that the composite coating has good repair effect and high repair times, which can be applied in industrial production and further promote the development of Janus materials in the field of corrosion protection.

学科门类理学
语种中文
目录

1 绪论........................................................................................ 1

1.1 研究背景及意义................................................................................................ 1

1.2 涂层中无机填料的改性作用及分类................................................................ 2

1.2.1 纳米金属氧化物......................................................................................... 2

1.2.2 天然黏土矿物............................................................................................. 2

1.2.3 碳纳米材料................................................................................................. 3

1.3 自修复防腐涂层................................................................................................ 4

1.3.1 外援型自修复涂层..................................................................................... 5

1.3.2 本征型自修复涂层..................................................................................... 7

1.4 超疏水防腐涂层................................................................................................ 8

1.5 Janus多功能涂层.............................................................................................. 11

1.5.1 Janus材料的分类....................................................................................... 11

1.5.2 Janus膜材料............................................................................................... 13

1.5.3 Janus膜的研究现状................................................................................... 13

1.5.4 Janus膜的制备方式................................................................................... 15

1.6 本文的主要研究内容...................................................................................... 17

2 基于海泡石改性的超疏水复合涂层的构建及其腐蚀防护性能研究..................................................................................................... 1

2.1 引言.................................................................................................................... 1

2.2 实验部分............................................................................................................ 1

2.2.1 实验材料..................................................................................................... 1

2.2.2 超疏水海泡石颗粒的制备......................................................................... 2

2.2.3 基于改性海泡石的超疏水复合涂层的制备............................................. 2

2.2.4 超疏水复合涂层的机械稳定性测试......................................................... 3

2.2.5 超疏水复合涂层的电化学测试、盐雾测试以及SKP测试.................... 3

2.2.6 表征方法..................................................................................................... 4

2.3 结果与讨论........................................................................................................ 4

2.3.1 改性海泡石的表面形貌、化学组成和润湿性......................................... 4

2.3.2 超疏水复合涂层的表面形貌、化学组成和润湿性................................. 5

2.3.3 超疏水复合涂层的机械性能..................................................................... 7

2.3.4 超疏水复合涂层的腐蚀防护性能............................................................. 7

2.3.5 超疏水复合涂层的盐雾测试................................................................... 10

2.3.6 多功能涂层的SKP测试.......................................................................... 12

2.3.7 超疏水复合涂层的自清洁性能............................................................... 13

2.4 本章小结.......................................................................................................... 14

3 基于Kaolin@PVDF静电纺丝膜复合涂层的构建及其腐蚀防护性能研究........................................................................................... 15

3.1 引言.................................................................................................................. 15

3.2 实验部分.......................................................................................................... 15

3.2.1 实验材料................................................................................................... 15

3.2.2 高岭土纳米颗粒的改性(KL-MA...................................................... 16

3.2.3 制备改性 PVDF 纤维多功能复合涂层................................................. 16

3.2.4 电化学测试............................................................................................... 17

3.2.5 机械性能测试........................................................................................... 18

3.2.6 磁通量测试............................................................................................... 18

3.2.7 表征........................................................................................................... 19

3.3 结果与讨论...................................................................................................... 19

3.3.1 高岭土修饰表征....................................................................................... 19

3.3.2 含有不同KL-MA粉末的PVDF-NF的特性分析.................................. 20

3.3.3 不同涂层的疏水性和表面粗糙度........................................................... 21

3.3.4 电化学测试............................................................................................... 23

3.3.5 盐雾试验................................................................................................... 26

3.3.6 机械性能测试........................................................................................... 27

3.3.7 磁通量检测技术....................................................................................... 29

3.3.8 分子动力学模拟....................................................................................... 31

3.4 本章小结.......................................................................................................... 32

4 Janus多功能涂层在海洋环境中对金属腐蚀及生物污损的防护作用研究........................................................................................... 35

4.1 引言.................................................................................................................. 35

4.2 实验部分.......................................................................................................... 36

4.2.1 实验材料................................................................................................... 36

4.2.2 肉桂酸改性氧化锌(ZnO@CA........................................................... 36

4.2.3 亲水性纳米纤维膜的制备工艺............................................................... 36

4.2.4 复合Janus膜涂层的制备......................................................................... 37

4.2.5 电化学测试............................................................................................... 38

4.2.6 表征........................................................................................................... 39

4.2.7 抗菌测试................................................................................................... 39

4.3 结果与讨论...................................................................................................... 39

4.3.1 Janus膜的表面表征................................................................................... 39

4.3.2 Janus膜的表面粗糙度和润湿性............................................................... 40

4.3.3 Janus膜的自清洁和防污性能................................................................... 41

4.3.4 Janus 膜的机械性能.................................................................................. 43

4.3.5 Janus涂层的防腐性能............................................................................... 45

4.3.6 Janus涂层耐盐雾试验............................................................................... 49

4.3.7 Janus涂层抗菌性能测试........................................................................... 51

4.3.8 Janus涂层防腐蚀防污机制....................................................................... 52

4.4 本章小结.......................................................................................................... 53

5 具有形状记忆修复的Janus多功能涂层在海洋环境中对金属腐蚀的防护作用研究........................................................................... 55

5.1 引言.................................................................................................................. 55

5.2 实验部分.......................................................................................................... 55

5.2.1 实验材料................................................................................................... 55

5.2.2 十六烷基三甲氧基硅烷改性硅藻土....................................................... 56

5.2.3 Janus复合涂层亲水侧制备....................................................................... 56

5.2.4 复合Janus膜涂层的制备......................................................................... 58

5.2.5 热重测试与自修复测试........................................................................... 58

5.2.6 电化学测试............................................................................................... 58

5.2.7 表征........................................................................................................... 58

5.3 结果与讨论...................................................................................................... 59

5.3.1 不同配比的形状记忆树脂涂层............................................................... 59

5.3.2 亲水侧/疏水侧的表面表征...................................................................... 60

5.3.3 Janus膜的表面粗糙度和润湿性............................................................... 61

5.3.4 形状记忆Janus涂层的自修复性能......................................................... 62

5.3.5 Janus形状记忆涂层的机械性能测试....................................................... 62

5.3.6 Janus形状记忆涂层防腐性能................................................................... 63

5.4 本章小结.......................................................................................................... 65

6 结论与展望.......................................................................... 67

6.1 结论.................................................................................................................. 67

6.2 创新点.............................................................................................................. 68

6.3 展望.................................................................................................................. 69

参考文献............................................................................................... 71

  ................................................................................................... 88

作者简历及攻读学位期间发表的学术论文与其他相关学术成果..... 90

文献类型学位论文
条目标识符http://ir.qdio.ac.cn/handle/337002/185289
专题海洋环境腐蚀与生物污损重点实验室
推荐引用方式
GB/T 7714
袁帅. 基于改性无机填料/电纺纤维膜制备Janus涂层及其防腐性能研究[D]. 中国科学院海洋研究所. 中国科学院大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
袁帅-博士毕业论文.pdf(8137KB)学位论文 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[袁帅]的文章
百度学术
百度学术中相似的文章
[袁帅]的文章
必应学术
必应学术中相似的文章
[袁帅]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 袁帅-博士毕业论文.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。