IOCAS-IR  > 海洋环流与波动重点实验室
The effects of random surface waves on the steady Ekman current solutions
Song, Jin-Bao1,2
2009-05-01
发表期刊DEEP-SEA RESEARCH PART I-OCEANOGRAPHIC RESEARCH PAPERS
ISSN0967-0637
卷号56期号:5页码:659-671
文章类型Article
摘要The response of near-surface current profiles to wind and random surface waves are studied based on the approach of Jenkins [1989. The use of a wave prediction model for driving a near surface current model. Dtsch. Hydrogr. Z. 42,134-149] and Tang et al. [2007. Observation and modeling of surface currents on the Grand Banks: a study of the wave effects on surface currents. J. Geophys. Res. 112, C10025, doi:10.1029/2006JC004028]. Analytic steady solutions are presented for wave-modified Ekman equations resulting from Stokes drift, wind input and wave dissipation for a depth-independent constant eddy viscosity coefficient and one that varies linearly with depth. The parameters involved in the solutions can be determined by the two-dimensional wavenumber spectrum of ocean waves, wind speed, the Coriolis parameter and the densities of air and water, and the solutions reduce to those of Lewis and Belcher [2004. Time-dependent, coupled, Ekman boundary layer solutions incorporating Stokes drift. Dyn. Atmos. Oceans. 37, 313-351] when only the effects of Stokes drift are included. As illustrative examples, for a fully developed wind-generated sea with different wind speeds, wave-modified current profiles are calculated and compared with the classical Ekman theory and Lewis and Belcher's [2004. Time-dependent, coupled, Ekman boundary layer solutions incorporating Stokes drift. Dyn. Atmos. Oceans 37, 313-351] modification by using the Donelan and Pierson [1987. Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry. J. Geophys. Res. 92, 4971-5029] wavenumber spectrum, the WAM wave model formulation for wind input energy to waves, and wave energy dissipation converted to currents. Illustrative examples for a fully developed sea and the comparisons between observations and the theoretical predictions demonstrate that the effects of the random surface waves on the classical Ekman current are important, as they change qualitatively the nature of the Ekman layer. But the effects of the wind input and wave dissipation on surface current are small, relative to the impact of the Stokes drift. (C) 2008 Elsevier Ltd. All rights reserved.; The response of near-surface current profiles to wind and random surface waves are studied based on the approach of Jenkins [1989. The use of a wave prediction model for driving a near surface current model. Dtsch. Hydrogr. Z. 42,134-149] and Tang et al. [2007. Observation and modeling of surface currents on the Grand Banks: a study of the wave effects on surface currents. J. Geophys. Res. 112, C10025, doi:10.1029/2006JC004028]. Analytic steady solutions are presented for wave-modified Ekman equations resulting from Stokes drift, wind input and wave dissipation for a depth-independent constant eddy viscosity coefficient and one that varies linearly with depth. The parameters involved in the solutions can be determined by the two-dimensional wavenumber spectrum of ocean waves, wind speed, the Coriolis parameter and the densities of air and water, and the solutions reduce to those of Lewis and Belcher [2004. Time-dependent, coupled, Ekman boundary layer solutions incorporating Stokes drift. Dyn. Atmos. Oceans. 37, 313-351] when only the effects of Stokes drift are included. As illustrative examples, for a fully developed wind-generated sea with different wind speeds, wave-modified current profiles are calculated and compared with the classical Ekman theory and Lewis and Belcher's [2004. Time-dependent, coupled, Ekman boundary layer solutions incorporating Stokes drift. Dyn. Atmos. Oceans 37, 313-351] modification by using the Donelan and Pierson [1987. Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry. J. Geophys. Res. 92, 4971-5029] wavenumber spectrum, the WAM wave model formulation for wind input energy to waves, and wave energy dissipation converted to currents. Illustrative examples for a fully developed sea and the comparisons between observations and the theoretical predictions demonstrate that the effects of the random surface waves on the classical Ekman current are important, as they change qualitatively the nature of the Ekman layer. But the effects of the wind input and wave dissipation on surface current are small, relative to the impact of the Stokes drift. (C) 2008 Elsevier Ltd. All rights reserved.
关键词Ekman Current Random Wave Stokes Drift Eddy Viscosity Coefficient
学科领域Oceanography
DOI10.1016/j.dsr.2008.12.014
URL查看原文
收录类别SCI
语种英语
WOS记录号WOS:000265737100001
引用统计
被引频次:23[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.qdio.ac.cn/handle/337002/2396
专题海洋环流与波动重点实验室
作者单位1.Chinese Acad Sci, Inst Oceanol, Qingdao 266071, Peoples R China
2.Chinese Acad Sci, KLOCAW, Qingdao 266071, Peoples R China
第一作者单位中国科学院海洋研究所;  海洋环流与波动重点实验室
推荐引用方式
GB/T 7714
Song, Jin-Bao. The effects of random surface waves on the steady Ekman current solutions[J]. DEEP-SEA RESEARCH PART I-OCEANOGRAPHIC RESEARCH PAPERS,2009,56(5):659-671.
APA Song, Jin-Bao.(2009).The effects of random surface waves on the steady Ekman current solutions.DEEP-SEA RESEARCH PART I-OCEANOGRAPHIC RESEARCH PAPERS,56(5),659-671.
MLA Song, Jin-Bao."The effects of random surface waves on the steady Ekman current solutions".DEEP-SEA RESEARCH PART I-OCEANOGRAPHIC RESEARCH PAPERS 56.5(2009):659-671.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
song-The effects of (719KB) 限制开放--浏览
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Song, Jin-Bao]的文章
百度学术
百度学术中相似的文章
[Song, Jin-Bao]的文章
必应学术
必应学术中相似的文章
[Song, Jin-Bao]的文章
相关权益政策
暂无数据
收藏/分享
文件名: song-The effects of random surface wave.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。